SpaceX’s Dragon Capsule Carried Mutant Mustard Plant Seeds To The ISS For Zero Gravity Experiment

Among several other botany experiments, including Budweiser’s famous barley seeds, the Dragon spacecraft shipped mutant mustard plant seeds to the ISS.

NASA via AP Images

The astronauts aboard the International Space Station (ISS) have already begun unpacking the cargo delivered on Sunday (December 17) via SpaceX’s recycled Dragon capsule.

Among the 4,800 pounds of supplies, hardware and research equipment that were hauled to the orbiting laboratory in SpaceX’s CRS-13 resupply mission are hundreds of mustard plant seeds sent by researchers at the University of Wisconsin-Madison to be studied in zero-gravity conditions for a period of one month.

“SpaceX-13 is big on biology,” Kirt Costello, NASA’s ISS deputy chief scientist, remarked in a statement.

“Plant growth, one of the areas that we do research into on the space station, has eight investigations flying on the SpaceX Dragon, and they spread out over multiple different facilities,” he added.

Just like the 20 Budweiser barley seeds that made their way onto the ISS to be examined in microgravity conditions, the mustard plant seeds will also be part of an experiment “to test how plants grow in the stressful environment of zero gravity,” shows a news release issued by the university.

The month-long experiment will be conducted simultaneously both on the ISS by the crew of NASA’s Expedition 54, and back on Earth by project leader Simon Gilroy, a botany professor at the University of Wisconsin-Madison. Gilroy has previously overseen three other similar “plants-in-space experiments” and is about to begin his fourth one.

The project is funded by NASA and aims to explore the effects of low-oxygen environments on plants, and to see how they react to changes in water and air behavior under zero gravity conditions.

“Water becomes really sticky on the space station,” notes Gilroy, adding that “if you water your plants, the water wants to stick to the surface of the plants and to the roots, creating a low-oxygen environment.”

The long-term goal of these studies is to understand how plants grow in space so that one day astronauts could benefit from their own lab-grown crops, both as a food supply and for air purifying purposes, Gilroy explained back in 2012.

“The only life support system we know that works really, really well is the Earth’s, and that is built around plants and microbes,” he said in a statement prior to a similar experiment that he was preparing for at the time.

“It’s not 100 percent clear it will work, but the long-term goal is to integrate those tools into space missions: plants to grow your food and purify the air and water; microbes as the waste-processing system,” Gilroy clarified in that statement.

For this purpose, his team has chosen a small mustard plant called Arabidopsis, commonly known as mouse-eared cress, and which Gilroy has dubbed “the lab rat of plant biology.”

To start off his fourth zero gravity experiment, Gilroy shipped hundreds of Arabidopsis seeds in SpaceX’s latest Dragon cargo delivery to the ISS. These seeds belong to a mutant version of Arabidopsis, which can withstand stressful low-oxygen environments, mentions the news release.

Image of Arabidopsis in a growth chamber.
The astronauts aboard the ISS will be examining how Arabidopsis seeds grow in zero gravity, by studying a mutant, more resilient, version of the mustard plant, as well as a genetically engineered fluorescent variety.Featured image credit: SINITARShutterstock

According to Spaceflight Now, the results of this experiment could offer more insight into how plants might grow in future habitats on the moon or on Mars.

Unlike the previous Arabidopsis experiments that were performed in the dark, the Expedition 54 crew — which has just been completed today (December 19) with the arrival of three new astronauts — will be growing the seeds under light, in order to provide “more realistic conditions.” To make this possible, the astronauts will be employing the “Veggie” plant growth system, successfully used in 2015 by the Expedition 44 crew to grow lettuce aboard the ISS.

The astronauts will also use microscopes to take images of the living plants in their various growth stages. This has never been done before, notes the university news release, and will considerably add to the knowledge of zero-gravity plant growth.

In addition, Gilroy’s team has genetically engineered a type of fluorescent Arabidopsis that produces luminescent proteins when deprived of oxygen. The Expedition 54 crew will be imaging these fluorescent plants in orbit midway through the experiment, in order to piece together “a map of where within the plant there is local low-oxygen stress,” Gilroy points out.

Once the experiment is completed, the astronauts will freeze the Arabidopsis plants and prepare them for their return home trip aboard the same Dragon capsule that brought them to the ISS. To stop the plants from growing any further until their journey back to Earth, the astronauts will apply a chemical fixative after one month of zero-gravity growth.

While Expedition 54 will be carrying out this experiment, Gilroy will also be growing identical Arabidopsis seedlings in his lab. This way, when the zero-gravity samples are returned to the university, he will be able to compare them and assess the plants’ “growth with and without gravity,” details the news release.

The goal is to see “how well the plants grow” in space, as Gilroy puts it. Previous zero gravity experiments have shown that plants develop well enough in space to “go through an entire life cycle,” he points out. But Gilroy’s aim is to find out how the process can be improved.

“We are still at the level of working out whether the issues in space are intrinsic to the biology, or whether we’re just not really good space gardeners yet.”

“And we are right at the dawn of space agriculture. We just haven’t done enough of it to know which are the correct ways to do things,” Gilroy concludes.