Iceland Volcano Eruption Caused By Chain Reaction

Kyle Murphy - Author

Jun. 15 2013, Updated 4:01 p.m. ET

A group of researchers say that the eruptions of Iceland’s volcano Eyjafjallajökull in 2010 were apparently triggered by a chain reaction of expanding magma chambers that descended into the Earth.

According to NBC News, after nearly two centuries of dormancy, Eyjafjallajökull (AYA-feeyapla-yurkul) erupted many times over the course of 10 weeks. The eruptions spewed a huge plume of ash that caused extraordinary lightning displays, colored sunsets a fiery red across much of Europe, and forced widespread flight cancellations for days.

Article continues below advertisement

The eruptions began in 2010 when a fissure opened on the flank of Eyjafjallajökull in March, revealing that it was inflating with magma. An explosion then burst from the volcano’s summit in April, and three more major explosions from Eyjafjallajökull rocked Iceland in May.

Analysis of material spewed from the explosions suggests each explosion involved separate chambers loaded with magma of distinct ages and compositions.

To learn more about what caused this spate of eruptions, the researchers analyzed swarms of microearthquakes during the outbursts. The data suggests that the first explosion was rooted in a magma chamber about 3 miles (5 kilometers) below the surface, while the three later explosions stemmed from magma chambers at depths of about 7 miles (11.5 km), 12 miles (19 km) and 15 miles (24 km).

Interestingly, the researchers found that microearthquakes apparently occurred at greater depths with each outburst. Researchers now suggest that the series of eruptions was due to a “decompression wave” that essentially rippled downward, upsetting the volcano’s plumbing.

Article continues below advertisement

The initial explosion spewed a massive amount of magma and melted about 650 feet (200 meters) of ice. The researchers suggest this relieved a great deal of pressure exerted from Eyjafjallajökull’s summit on its innards. This drop in pressure from above caused a magma chamber slightly lower down to begin inflating. When this led to an explosion, this liberated magma in another chamber slightly lower down, and created a cascade through successively lower chambers.

Jon Tarasewicz, a geophysicist at the University of Cambridge in England said:

Blockquote open

“It’s novel to have been able to match the deep seismic observations to big changes in the eruption rate at the surface. In this case, it seems the volcanic plumbing system at depth responded to changes near the surface, rather than vice versa.”

- Blockquote close
Article continues below advertisement

Tarasewicz continued by saying:

Blockquote open

“There are several examples around the world of volcanoes that are thought to have more than one magma chamber, stacked at different depths beneath the volcano. Understanding the pressure linkage and feedback between different magma storage reservoirs may help us to understand why some volcanoes like Eyjafjallajökull have prolonged eruptions with episodic surges in eruption rate.”

- Blockquote close

Although this research could yield insights on the magma underlying a volcano and how it might behave, Tarasewicz cautioned, “we are still not in a position to be able to predict accurately in advance when, or if, a volcano is going to erupt.”

The scientists detailed their findings online October 13 in the journal Geophysical Research Letters.


Latest iceland News and Updates

    © Copyright 2022 The Inquisitr. The Inquisitr is a registered trademark. All Rights Reserved. People may receive compensation for some links to products and services on this website. Offers may be subject to change without notice.